Skip to main content
版本:Next

Raven

本文将介绍如何使用Raven来增强边缘集群中的边-边和边-云网络打通能力。

假设你已经有了一个边缘kubernetes集群,节点分布在不同的物理区域如图所示,并且已经在这个集群中部署了Yurt ManagerRaven Agent,如果没有部署可以参照安装教程raven_deploy

1. 节点打标区分不同网络域

如下所示,假设你的边缘集群中有五个节点,分布在三个不同的物理(网络)区域,其中节点master节点同样也是云端节点。

$ kubectl get nodes -o wide
NAME                      STATUS   ROLES                  AGE     VERSION    INTERNAL-IP     EXTERNAL-IP   OS-IMAGE                KERNEL-VERSION                CONTAINER-RUNTIME
izbp15inok0kbfkg3in52rz   Ready    Edge-HZ-1              27h     v1.22.11   172.16.2.103    <none>        CentOS Linux 7 (Core)   3.10.0-1160.81.1.el7.x86_64   docker://19.3.15
izbp15inok0kbfkg3in52sz   Ready    Edge-HZ-2              26h     v1.22.11   172.16.2.104    <none>        CentOS Linux 7 (Core)   3.10.0-1160.81.1.el7.x86_64   docker://19.3.15
izm5eb24dmjfimuaybpnqzz   Ready    Edge-QD-1              29h     v1.22.11   172.16.1.89     <none>        CentOS Linux 7 (Core)   3.10.0-1160.80.1.el7.x86_64   docker://19.3.15
izm5eb24dmjfimuaybpnr0z   Ready    Edge-QD-2              29h     v1.22.11   172.16.1.90     <none>        CentOS Linux 7 (Core)   3.10.0-1160.80.1.el7.x86_64   docker://19.3.15
izwz9dohcv74iegqecp4axz   Ready    control-plane,master   5d21h   v1.22.11   192.168.0.195   <none>        CentOS Linux 7 (Core)   3.10.0-1160.80.1.el7.x86_64   docker://20.10.2
izwz9ey0js5z7mornclpd6z   Ready    cloud                  3h3m    v1.22.11   192.168.0.196   <none>        CentOS Linux 7 (Core)   3.10.0-1160.80.1.el7.x86_64   docker://20.10.2

我们对位于不同物理(网络)区域节点,分别使用一个Gateway CR来进行管理。通过给节点打标的方式,来标识节点由哪个Gateway管理。

通过如下命令,我们给位于hangzhou的节点打gw-hangzhou的标签,来表明这些节点是由gw-hangzhou这个Gateway CR来管理的。

$ kubectl label nodes izbp15inok0kbfkg3in52rz izbp15inok0kbfkg3in52sz raven.openyurt.io/gateway=gw-hangzhou
node/izbp15inok0kbfkg3in52rz not labeled
node/izbp15inok0kbfkg3in52sz not labeled

同样地,我们分别为位于云端节点和master节点打上gw-cloud,和给位于qingdao的节点打gw-qingdao的标签。

$ kubectl label nodes izwz9dohcv74iegqecp4axz izwz9ey0js5z7mornclpd6z raven.openyurt.io/gateway=gw-cloud
node/izwz9dohcv74iegqecp4axz labeled
node/izwz9ey0js5z7mornclpd6z labeled
$ kubectl label nodes izm5eb24dmjfimuaybpnqzz izm5eb24dmjfimuaybpnr0z raven.openyurt.io/gateway=gw-qingdao
node/izm5eb24dmjfimuaybpnqzz  labeled
node/izm5eb24dmjfimuaybpnr0z  labeled

运行如下命令,检查相应的Raven Agent的Pod是否成功运行。

$ kubectl get pod -n kube-system | grep raven-agent-ds
raven-agent-ds-4b587                              1/1     Running             0              25h
raven-agent-ds-dmh66                              1/1     Running             0              25h
raven-agent-ds-gb5qj                              1/1     Running             0              25h
raven-agent-ds-gzpfh                              1/1     Running             0              170m
raven-agent-ds-ksxq6                              1/1     Running             0              25h
raven-agent-ds-qhjtb                              1/1     Running             0              25h

2. 如何使用

2.1 Gateways

  • 创建的Gateway CR
$ cat <<EOF | kubectl apply -f -
apiVersion: raven.openyurt.io/v1beta1
kind: Gateway
metadata:
  name: gw-hangzhou
spec:
  proxyConfig:
    Replicas: 1
  tunnelConfig:
    Replicas: 1
  endpoints:
    - nodeName: izbp15inok0kbfkg3in52rz
      underNAT: true
      port: 10262
      type: proxy
    - nodeName: izbp15inok0kbfkg3in52rz
      underNAT: true
      port: 4500
      underNAT: true
      type: tunnel
---
apiVersion: raven.openyurt.io/v1alpha1
kind: Gateway
metadata:
  name: gw-cloud
spec:
  exposeType: PublicIP
  proxyConfig:
    Replicas: 1
    proxyHTTPPort: 10255,9445
    proxyHTTPSPort: 10250,9100
  tunnelConfig:
    Replicas: 1
  endpoints:
    - nodeName: izwz9dohcv74iegqecp4axz
      underNAT: false
      port: 10262
      type: proxy
      publicIP: 120.79.xxx.xxx
    - nodeName: izwz9dohcv74iegqecp4axz
      underNAT: false
      port: 4500
      type: tunnel
      publicIP: 120.79.xxx.xxx

---
apiVersion: raven.openyurt.io/v1alpha1
kind: Gateway
metadata:
  name: gw-qingdao
spec:
  proxyConfig:
    Replicas: 1
  tunnelConfig:
    Replicas: 1
  endpoints:
  - nodeName: izm5eb24dmjfimuaybpnqzz
    underNAT: true
    port: 10262
    type: proxy
  - nodeName: izm5eb24dmjfimuaybpnr0z
    underNAT: true
    port: 4500
    type: tunnel
EOF
  • 参数介绍:
  1. spec.exposedType: 在公网暴露的类型,LoadBalancer为采用负载均衡暴露、PublicIP为采用公网IP暴露,空为不暴露,一般云上暴露,边缘不暴露
  2. spec.endpoints: 表示一组备选的网关节点,控制面会根据节点状态在其中选取一部分作为网关节点
  3. spec.endpoints.nodeName: 网关节点名
  4. spec.endpoints.type: 网关节点的类型, 代理模式为proxy,隧道模式为tunnel
  5. spec.endpoints.port: 网关节点服务暴露的端口:代理模式一般为TCP 10262,隧道模式为UDP 4500
  6. spec.endpoints.publicIP: 网关节点的公网地址
  7. spec.endpoints.underNAT: 是否采用NAT的方式访问公网,一般云上采用false,边缘采用true
  8. spec.proxyConfig.Replicas: 支持代理模式的网关节点副本数,不得大于endpoints中节点数
  9. spec.proxyConfig.proxyHTTPPort: 云边代理模式通信代理的非安全端口, 例如kubelet监听的10255端口
  10. spec.proxyConfig.proxyHTTPPort: 云边代理模式通信代理的安全端口, 例如kubelet监听的10250端口
  11. spec.tunnelConfig.proxyHTTPPort: 支持隧道模式的网关节点的副本数,目前不支持多副本
  12. status.activeEndpoints: 从spec.endpoints 的备选网关节点中选择指定数量的网关节点,激活的网关节点上的RavenAgent作为运行实例负责隧道构建和路由管理
  13. status.nodes: 由本Gateway负责代理的节点
  • 查看各个Gateway CR的状态
  1. 确保Gateway的Status中是否选举了网关节点,选举动作由Yurt-Manager组件GatewayPickup Controller负责。
  2. 确认公网地址、暴露端口是否正确
  3. 确认开启的模式是否达到预期

开启隧道模式,设置 enable-l3-tunnel: "true" 开启代理模式,设置 enable-l7-proxy: "true"

$ kubectl get cm raven-cfg -n kube-system -o yaml
apiVersion: v1
data:
  enable-l3-tunnel: "true"
  enable-l7-proxy: "true"
kind: ConfigMap
metadata:
  annotations:
    meta.helm.sh/release-name: raven-agent
    meta.helm.sh/release-namespace: kube-system
  creationTimestamp: "2023-11-24T06:44:54Z"
  labels:
    app.kubernetes.io/managed-by: Helm
  name: raven-cfg
  namespace: kube-system
$ kubectl get gateways

NAME          AGE
gw-cloud      22h
gw-hangzhou   22h
gw-qingdao    22h

$ kubectl get gateway gw-cloud -o yaml
apiVersion: raven.openyurt.io/v1alpha1
kind: Gateway
metadata:
  name: gw-cloud
spec:
  exposeType: PublicIP
  proxyConfig:
    Replicas: 1
    proxyHTTPPort: 10255,9445
    proxyHTTPSPort: 10250,9100
  tunnelConfig:
    Replicas: 1
  endpoints:
    - nodeName: izwz9dohcv74iegqecp4axz
      underNAT: false
      port: 10262
      type: proxy
      publicIP: 120.79.xxx.xxx
    - nodeName: izwz9dohcv74iegqecp4axz
      underNAT: false
      port: 4500
      type: tunnel
      publicIP: 120.79.xxx.xxx
status:
  activeEndpoints:
  - config:
      enable-l7-proxy: "true"
    nodeName: izwz9dohcv74iegqecp4axz
    port: 10262
    publicIP: 47.xxx.xxx.xxx
    type: proxy
  - config:
      enable-l3-tunnel: "true"
    nodeName: izwz9dohcv74iegqecp4axz
    port: 4500
    publicIP: 47.xxx.xxx.xxx
    type: tunnel
  nodes:
  - nodeName: izwz9dohcv74iegqecp4axz
    privateIP: 192.168.0.195
    subnets:
    - 10.224.0.128/26
  - nodeName: izwz9ey0js5z7mornclpd6z
    privateIP: 192.168.0.196
    subnets:
    - 10.224.0.0/26

$ kubectl get gateway gw-hangzhou -o yaml
apiVersion: raven.openyurt.io/v1beta1
kind: Gateway
metadata:
  name: gw-hangzhou
spec:
  proxyConfig:
    Replicas: 1
  tunnelConfig:
    Replicas: 1
  endpoints:
    - nodeName: izbp15inok0kbfkg3in52rz
      underNAT: true
      port: 10262
      type: proxy
    - nodeName: izbp15inok0kbfkg3in52rz
      underNAT: true
      port: 4500
      underNAT: true
      type: tunnel
status:
  activeEndpoints:
  - config:
      enable-l7-proxy: "true"
    nodeName: izbp15inok0kbfkg3in52rz
    port: 10262
    publicIP: 120.79.xxx.xxx
    type: proxy
  - config:
      enable-l3-tunnel: "true"
    nodeName: izbp15inok0kbfkg3in52rz
    port: 4500
    publicIP: 120.79.xxx.xxx
    type: tunnel
  nodes:
  - nodeName: izbp15inok0kbfkg3in52rz
    privateIP: 172.16.2.103
    subnets:
    - 10.224.1.128/26
  - nodeName: izbp15inok0kbfkg3in52sz
    privateIP: 172.16.2.104
    subnets:
    - 10.224.1.0/26

2.2 测试位于不同网络域的Pod网络联通性 (隧道模式)

  • 创建测试Pod
$ cat <<EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
  name: busy-box
spec:
  replicas: 4
  selector:
    matchLabels:
      app: busy-box
  template:
    metadata:
      labels:
        app: busy-box
    spec:
      containers:
      - name: busy-box
        image: busybox
        command:
        - /bin/sh
        - -c
        - sleep 3000
      nodeSelector:
        openyurt.io/is-edge-worker: "true"
EOF
  • 确定测试Pod正常运行
$ kubectl get pod -o wide
busy-box-6f46f8585b-48zb9   1/1     Running   0          76s   10.244.19.3     izbp15inok0kbfkg3in52sz   <none>           <none>
busy-box-6f46f8585b-9nm64   1/1     Running   0          76s   10.244.16.161   izm5eb24dmjfimuaybpnqzz   <none>           <none>
busy-box-6f46f8585b-kv4dw   1/1     Running   0          76s   10.244.17.19    izm5eb24dmjfimuaybpnr0z   <none>           <none>
busy-box-6f46f8585b-t5v9d   1/1     Running   0          76s   10.244.18.4     izbp15inok0kbfkg3in52rz   <none>           <none>
  • 测试跨网络域的Pod网络联通
$ kubectl exec -it busy-box-6f46f8585b-48zb9 -- sh
/ # ping 10.244.17.19 -c 4
PING 10.244.17.19 (10.244.17.19): 56 data bytes
64 bytes from 10.244.17.19: seq=0 ttl=59 time=78.048 ms
64 bytes from 10.244.17.19: seq=1 ttl=59 time=77.424 ms
64 bytes from 10.244.17.19: seq=2 ttl=59 time=77.490 ms
64 bytes from 10.244.17.19: seq=3 ttl=59 time=77.472 ms

--- 10.244.17.19 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 77.424/77.608/78.048 ms

  • 测试跨网络域的节点网络联通: 登陆到非Gateway节点Edge-HZ-2 ping 非Gateway节点Edge-QD-2
# 节点Edge-HZ-2(非Gateway节点):
ping 172.16.1.90 -c 4
PING 172.16.1.90 (172.16.1.90) 56(84) bytes of data.
64 bytes from 172.16.1.90: icmp_seq=1 ttl=61 time=77.5 ms
64 bytes from 172.16.1.90: icmp_seq=2 ttl=61 time=77.3 ms
64 bytes from 172.16.1.90: icmp_seq=3 ttl=61 time=78.5 ms
64 bytes from 172.16.1.90: icmp_seq=4 ttl=61 time=77.3 ms

--- 172.16.1.90 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 77.314/77.682/78.531/0.533 ms
# 抓包
# 节点Edge-HZ-1(Gateway节点):
tcpdump -i raven0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on raven0, link-type EN10MB (Ethernet), capture size 262144 bytes
16:13:12.132496 IP 172.16.2.104 > 172.16.1.90: ICMP echo request, id 2, seq 1, length 64
16:13:13.133606 IP 172.16.2.104 > 172.16.1.90: ICMP echo request, id 2, seq 2, length 64
16:13:14.134172 IP 172.16.2.104 > 172.16.1.90: ICMP echo request, id 2, seq 3, length 64
16:13:15.135570 IP 172.16.2.104 > 172.16.1.90: ICMP echo request, id 2, seq 4, length 64
# 抓包
# 节点Edge-QD-1(Gateway节点):
tcpdump -i raven0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on raven0, link-type EN10MB (Ethernet), capture size 262144 bytes
16:13:12.174023 IP 172.16.1.90 > 172.16.2.104: ICMP echo reply, id 2, seq 1, length 64
16:13:13.175096 IP 172.16.1.90 > 172.16.2.104: ICMP echo reply, id 2, seq 2, length 64
16:13:14.176813 IP 172.16.1.90 > 172.16.2.104: ICMP echo reply, id 2, seq 3, length 64
16:13:15.177024 IP 172.16.1.90 > 172.16.2.104: ICMP echo reply, id 2, seq 4, length 64
# 抓包
# 节点Edge-QD-2(非Gateway节点):
tcpdump -i raven0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on raven0, link-type EN10MB (Ethernet), capture size 262144 bytes
16:13:12.173087 IP iZm5eb24dmjfimuaybpnr0Z > 172.16.2.104: ICMP echo reply, id 2, seq 1, length 64
16:13:13.174148 IP iZm5eb24dmjfimuaybpnr0Z > 172.16.2.104: ICMP echo reply, id 2, seq 2, length 64
16:13:14.175884 IP iZm5eb24dmjfimuaybpnr0Z > 172.16.2.104: ICMP echo reply, id 2, seq 3, length 64
16:13:15.176090 IP iZm5eb24dmjfimuaybpnr0Z > 172.16.2.104: ICMP echo reply, id 2, seq 4, length 64

2.3 云边主机网络七层请求代理 (代理模式)

在边缘场景中,边缘设备往往处在封闭的内网环境中,因此边缘设备的内网IP地址常常会出现冲突,因此隧道模式不能支持IP冲突场景下的主机通信,因此需要开启代理模式,支持跨域的HTTP/HTTPS的请求。 开启代理模式,设置 enable-l7-proxy: "true"

注意:如果您只需要开启七层请求代理,并且边缘节点都是独立存在具有公网访问能力,只需要创建一个云上Gateway CR 即可,每个边缘节点都会主动与云上Gateway建立反向链接,对于一组边缘节点处于一个网络域,您可以为其创建Gateway CR,并且选出备选节点作为代理网关。

$ kubectl get cm raven-cfg -n kube-system -o yaml
apiVersion: v1
data:
  enable-l3-tunnel: "true"
  enable-l7-proxy: "true"
kind: ConfigMap
metadata:
  annotations:
    meta.helm.sh/release-name: raven-agent
    meta.helm.sh/release-namespace: kube-system
  creationTimestamp: "2023-11-24T06:44:54Z"
  labels:
    app.kubernetes.io/managed-by: Helm
  name: raven-cfg
  namespace: kube-system
$ kubectl exec -it busy-box-6f46f8585b-48zb9 -- sh
echo hello word
hello word

其他特性:

默认情况下,raven 使用 IPSec 作为 VPN 后端,我们还提供WireGuard作为替代方案。您可以通过以下步骤切换到 WireGuard 后端:

  • Raven 需要在集群中的网关节点上加载 WireGuard 内核模块。从 Linux 5.6 开始,内核包含 WireGuard in-tree;具有旧内核的 Linux 发行版将需要安装 WireGuard。对于大多数 Linux 发行版,这可以使用系统包管理器来完成。有关详细信息,请参阅安装 WireGuard。
  • 网关节点将需要一个开放的 UDP 端口才能进行通信。默认情况下,WireGuard 使用 UDP 端口 51820。 运行以下命令:
    cd raven
    git checkout v0.4.0
    VPN_DRIVER=wireguard make deploy
    

如何排查VPN问题:

  • 如采用IPSec隧道(libreswan方式)作为后端实现,可进入raven agent容器内,通过命令 ipsec status/look/usr/libexec/ipsec status/look 查看相关状态,并且合理运用ipsec工具排查相关问题。
  • 如采用Wiregurad隧道作为VPN后端实现,可进入raven agent容器内,安装wireguard-tools工具,参照工具说明排查相关问题。
  • Raven完全采用开源IPSec、Wireguard工具,无任何定制化,您可以参照开源社区以及相关技术博客解决日常问题。